Finding Bounds on Ehrhart Quasi-Polynomials

Harald Devos Jan Van Campenhout Dirk Stroobandt
ELIS/PARIS
Ghent University

Seventh ACES Symposium
September 17-18 2007, Edegem

Outline

(1) Introduction

- What are (Ehrhart) quasi-polynomials?
- Where do they arise?
- Why do we need bounds on quasi-polynomials?
(2) How do we find bounds?
- Continuous versus discrete domain extrema of polynomials
- Converting quasi-polynomials into polynomials
(3) Conclusions and Future Work

Outline

(1) Introduction

- What are (Ehrhart) quasi-polynomials?
- Where do they arise?
- Why do we need bounds on quasi-polynomials?
(2) How do we find bounds?
- Continuous versus discrete domain extrema of polynomials
- Converting quasi-polynomials into polynomials
(3) Conclusions and Future Work

Periodic Numbers

Example

Periodic Numbers

Definition

Let n be a discrete variable, i.e. $n \in \mathbb{Z}$. A 1-dimensional periodic number is a function that depends periodically on n.

$$
u(n)=\left[u_{0}, u_{1}, \ldots, u_{d-1}\right]_{n}= \begin{cases}u_{0} & \text { if } n \equiv 0 \quad(\bmod d) \\ u_{1} & \text { if } n \equiv 1 \quad(\bmod d) \\ \vdots & \text { if } n \equiv d-1 \quad(\bmod d)\end{cases}
$$

d is called the period.

Quasi-Polynomials

Example

$$
\begin{aligned}
f(n) & =-\left[\begin{array}{llll}
\left.\frac{1}{2}, \frac{1}{3}\right]_{n} n^{2}+3 n-[1,2]_{n} \\
& = & \left\{\begin{array}{llll}
-\frac{1}{3} n^{2}+3 n-2 & \text { if } n \equiv 0 & (\bmod 2) \\
-\frac{1}{2} n^{2}+3 n-1 & \text { if } n \equiv 1 & (\bmod 2)
\end{array}\right. \\
& & \\
& & &
\end{array}\right]
\end{aligned}
$$

Quasi-Polynomials

Definition

A polynomial in a variable x is a linear combination of powers of x :

$$
f(x)=\sum_{i=0}^{g} c_{i} x^{i}
$$

Quasi-Polynomials

Definition

A polynomial in a variable x is a linear combination of powers of x :

$$
f(x)=\sum_{i=0}^{g} c_{i} x^{i}
$$

Definition

A quasi-polynomial in a variable x is a polynomial expression with periodic numbers as coefficients:

$$
f(n)=\sum_{i=0}^{g} u_{i}(n) n^{i}
$$

with $u_{i}(n)$ periodic numbers.

Outline

(1) Introduction

- What are (Ehrhart) quasi-polynomials?
- Where do they arise?
- Why do we need bounds on quasi-polynomials?
(2) How do we find bounds?
- Continuous versus discrete domain extrema of polynomials
- Converting quasi-polynomials into polynomials
(3) Conclusions and Future Work

UNIVERSIEI

Where do Quasi-Polynomials arise?

```
Example
```



```
    \begin{tabular}{rr}
\(p\) & \(f(p)\) \\
\hline 3 & 5
\end{tabular}
\(x+y \leq p\)
```


Where do Quasi-Polynomials arise?

Example

Where do Quasi-Polynomials arise?

- The number of integer points in a parametric polytope P_{p} of dimension n is expressed as a piecewise a quasi-polynomial of degree n in p (Clauss and Loechner).
- More general polyhedral counting problems:

Systems of linear inequalities combined with $\vee, \wedge, \neg, \forall$, or \exists (Presburger formulas).

- Many problems in static program analysis can be expressed as polyhedral counting problems.

Outline

(1) Introduction

- What are (Ehrhart) quasi-polynomials?
- Where do they arise?
- Why do we need bounds on quasi-polynomials?
(2) How do we find bounds?
- Continuous versus discrete domain extrema of polynomials
- Converting quasi-polynomials into polynomials
(3) Conclusions and Future Work

Why do we need bounds on quasi-polynomials?

Some problems in static program analysis need bounds on quasi-polynomials.

Example
Number of live elements = quasi-polynomial
Memory usage $=$ maximum over all execution points

Outline

(1) Introduction

- What are (Ehrhart) quasi-polynomials?
- Where do they arise?
- Why do we need bounds on quasi-polynomials?
(2) How do we find bounds?
- Continuous versus discrete domain extrema of polynomials
- Converting quasi-polynomials into polynomials

3 Conclusions and Future Work

Continuous vs. Discrete domain extrema of polynomials

Discrete domain \Rightarrow evaluate in each point Not possible for

- parametric domains
- large domains (NP-complete)

Continuous vs. Discrete domain extrema of polynomials

- The relative difference is smaller for
- larger intervals
- lower degree
- \Rightarrow Continuous-domain extrema can be used as approximation of discrete-domain extrema.

Outline

(1) Introduction

- What are (Ehrhart) quasi-polynomials?
- Where do they arise?
- Why do we need bounds on quasi-polynomials?
(2) How do we find bounds?
- Continuous versus discrete domain extrema of polynomials
- Converting quasi-polynomials into polynomials

3 Conclusions and Future Work

How: Mod Classes

Example

How: Other Methods

Finding Bounds on Ehrhart Quasi-Polynomials

Other methods

- needed for large periods
- offer trade-off between accuracy and computation time
- see poster

Conclusions and Future Work

- Bounds on quasi-polynomials useful for static program analysis
- Different methods fit different situations (period, degree, domain size).
- Outlook
- A hybrid method should be constructed.
- Parametric bounds on parameterized quasi-polynomials

