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Samenva�ing

Alle materie is opgebouwd uit atomen. Democritus had dit al in de 5de eeuw
v.Chr. gepostuleerd, maar hij kon dit natuurlijk niet bewijzen. De wereld
van het atoom bleek echter moeilijk te doorgronden. Pas vanaf de 19de eeuw
kwam er echt schot in de zaak. Men ontdekte dat atomen niet ondeelbaar
waren en vond het deeltje dat wij tegenwoordig kennen als het elektron. In
het begin van de 20ste eeuw schakelde de ontdekkingstocht een versnelling
hoger.
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Abstract

Nothing is as simple as it seems at first.
Or as hopeless as it seems in the middle.
Or as finished as it seems in the end.

The world at the level of the atom is described by the branch of science called
quantum mechanics. The world of quantum mechanics is very di�erent from
our own macroscopic world. It is governed by probabilities and there is a
duality between particles and waves. Its foundations were built in the first
half of the twentieth century by a large group of physicists. The crown jewel
is given by the Schrödinger equation which describes a system of indistin-
guishable particles, that interact with each other. However, an equation
alone is not enough: the solution is what interests us. This is a problem,
because only for the smallest system is the analytical solution known. For
other systems we must resort to numerical techniques. And even then we
are plagued by an exponential scaling of the Hilbert space.
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Chapter 1

Introduction

We must be clear that when it comes to atoms, language can be
used only as in poetry. The poet, too, is not nearly so concerned
with describing facts as with creating images and establishing
mental connections.

Niels Bohr

Richard Feynman, one of the great physicists of the twentieth century, once
asked his students:

If, in some cataclysm, all of scientific knowledge were to be de-
stroyed, and only one sentence passed on to the next generation
of creatures, what statement would contain the most informa-
tion in the fewest words?

It is an interesting question and a wide range of answers is possible but
Feynman’s own idea is what is of interest here:

I believe it is the atomic hypothesis that all things are made of
atoms - li�le particles that move around in perpetual motion,
a�racting each other when they are a li�le distance apart, but
repelling upon being squeezed into one another. In that one
sentence, you will see, there is an enormous amount of infor-
mation about the world, if just a li�le imagination and thinking
are applied.

Todo: add more
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Variational second-order density matrix optimization

1.1 Variational second-order density matrix optimiza-
tion

An N -particle quantum system with pairwise interactions is governed by a
Hamiltonian

Ĥ = T̂ + V̂ , (1.1)

where T̂ are the one-body operators and V̂ the two-body operators. We want
to find the ground state energy and wave function,

ĤΨ(x) = E0Ψ(x), (1.2)

In the second quantization formalism, the Hamiltonian (1.1) can be wri�en
as

Ĥ =
∑
αβ

Tαβ â
†
αâβ +

1

4

∑
αβγδ

Vαβ;γδ â
†
αâ
†
β âδâγ , (1.3)

where Tαβ = 〈α|T̂ |β〉 and Vαβ;γδ = 〈αβ|V̂ |γδ〉 are the one- and two-
electron integrals. In this work, we only consider Hamiltonians which are
field-free (e.g. no magnetic field), non-relativistic and real. The wave function
is always over the field R. These are the default assumptions in quantum
chemistry. For atoms and molecules, this means that T̂ is the sum of the
electronic kinetic energy and the nuclei-electron a�raction, whereas V̂ rep-
resents the interelectronic Coulomb repulsion. We always work within the
Born-Oppenheimer approximation [1]: we assume that the wave function
can be split in its electronic and nuclear degrees of freedom and we neglect
the la�er. The associated Schrödinger equation in its matrix form is

Ĥ |ψ〉 = E0 |ψ〉 . (1.4)

The most simple solution is the mean-field approximation, also known as
Hartree-Fock (HF), in which |ψ〉 is given by a single Slater determinant:

|ψ〉 = â†α1
â†α2

. . . â†αN
|〉 . (1.5)

A Slater determinant is nothing more than the antisymmetric linear com-
bination of a set of orthogonal single-particle states. There are M !

N !(M−N)!
possible Slater determinants if the dimension of the single-particle basis is
M and N the number of particles. They form a complete basis in which we
can expand the wave function

|ψ〉 =
∑

α1α2α3...αN

cα1α2α3...αN â†α1
â†α2

â†α3
. . . â†αN

|〉 . (1.6)
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Introduction

In the Configuration Interaction (CI) method [2], the wave function is wri�en
as a linear combination of a set of Slater determinants. The coe�icients
are then optimized to find the lowest energy in eq. (1.4). The di�iculty in
this method lies in picking a suitable set of Slater determinants. The best
possible solution within the basis set limit is found when all possible Slater
determinant are used. This is called Full Configuration Interaction (FullCI)
and coincides with the exact diagonalization of the Hamiltonian matrix. Un-
fortunately, this is unfeasible for all but the smallest systems. Todo: rework
paragraph

To make further progress in the Variational Optimization of the second-order
reduced Density Matrix (v2DM) method, two clear directions exist: (1) the
search for newN -representability conditions which are computationally fea-
sible (cheap); and (2) improving the semidefinite program algorithms to ex-
ploit the specific structure of v2DM. On the first path, Verstichel et al. [3]
introduced subsystems constraints to fix the problem of fractional charges
[4]. Shenvi and Izmaylov [5] introduced active-space constraints. Stricter
bounds on the two-index conditions were derived [6, 7]. Spin symmetry and
point-group symmetry of molecules were exploited [8]. A stronger three-
index condition was derived [9]. System-specific constraints were introduced
[10, 11]. Even excitation energies were calculated [12] using the variation-
ally optimized second-order reduced Density Matrix (2DM). Additional con-
straints for non-singlet states were discussed [13]. Linear inequalities for the
2DM were found [14–16]. This list is far from conclusive and only aims to
give a glance of the activity on the N -representability front. Several books
and review papers are wri�en about v2DM and they provide an excellent
overview of the road so far [17–22].

On the semidefinite programming front, several algorithms were tried and
customized to v2DM [23–26]. The boundary point method [26] is currently
the fastest, but it is not always stable. In the convex optimization literature,
v2DM is known under the category ’very large scale’: the most common
semidefinite programming problems are much smaller. There exist general
purpose solvers [27] but they are not e�icient enough for our problem size.
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Chapter 2

The N -representability
problem

For a given wave function, the second-order reduced Density Matrix (2DM)
can be calculated using its definition. However, when given a random sym-
metric matrix, is it possible to find a corresponding (ensemble of) wave func-
tion which has the given matrix as the 2DM? This is the essence of the N -
representability problem.

2.1 General N -representability theorem

A graphical depiction of this theorem can be found in Figure 2.1 on the fol-
lowing page. The boundary of the convex set of N -representable pth-order
reduced density matrices is formed by an infinite number of tangent hyper-
planes, where each hyperplane represents a p-particle Hamiltonian and its
ground state energy.

2.2 Approximately N -representability conditions

In Section 2.1 we showed the necessary and su�icient conditions for N -
representability. These required the knowledge of the ground state energy of
every possible Hamiltonian and are thus not usable as a su�icient condition.
We can, however, use it as a necessary condition: if we restrict XX to Hamil-
tonians of which we know the ground state energy or a lower bound on it,
we can approximate the convex set of N -representable 2DM’s. In Figure 2.2
on the following page we give a graphical interpretation of this idea. The

7



Approximately N -representability conditions

Figure 2.1: Graphical depiction of the necessary and su�icient conditions
for N -representability. Every Hamiltonian H(p) can be rep-
resented by a hyperplane that bounds the convex set of N -
representable pΓ.

Figure 2.2: Graphical depiction of the necessary conditions for N -
representability. H(p)

1 belongs to the class of Hamiltonians of

which we know a bound on ground state energy whileH(p)
2 does

not. The true convex set of N -representable pΓ is smaller than
the approximate convex set delimited by the Hamiltonians of the
class of H(p)

1 .
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The N -representability problem

E C2

A 1 1
B 1 -1

(a) Character table of C2

A B
A A B
B B A

(b) Multiplication table of C2

Table 2.1: C2 overview: it has 2 classes of operations. The identity operation
and rotations over 180◦. The two irreducible representations are
A and B.

approximate set of N -representable 2DM will be larger than the true set:
there will be 2DM’s which fulfil all the necessary conditions but are still
not derivable from an ensemble of wave functions. As a consequence the
variational optimization of the 2DM will give a lower bound on the energy.
This is one of the highly a�ractive features of Variational Optimization of the
second-order reduced Density Matrix (v2DM).

2.3 Symmetry considerations

2.3.1 Spatial point group symmetry

For example, the C2H4 molecule shown in Figure 2.3 hasD2h symmetry. The

H

C

H

C

H

H

Figure 2.3: The ethylene molecule has D2h symmetry.

main two-fold rotation axis is the connecting axis between the two carbon
atoms (the z-axis). The two two-fold rotation axes are the x- and y-axis. The
three reflection planes are xy, xz and yz.

As an example, we show the character table and the multiplication table of
C2 group in Table 2.1. The character table contains the trace of the matrices
of the irreducible representations. It it split up into conjugacy classes as
the trace is invariant under a similarity transformation. These tables are ex-
tremely useful for decomposing a representation in its irreducible parts. The
first irreducible representation A is called the trivial representation because
all the representation matrices (scalars in this case) are one. Every group has
this irreducible representation.

9



The doubly-occupied Hilbert space

2.4 The doubly-occupied Hilbert space

In previous sections, we only made general assumptions about the (ensem-
ble of) wave functions from which the 2DM is derivable. All wave func-
tions should be normalized and antisymmetric. For symmetry, we made
assumptions on the quantum numbers of the wave function: it should be
a singlet wave function, or the wave function should transform according to
a certain irreducible representation. But we could make other or additional
assumptions. If we take a look at the Full Configuration Interaction (FullCI)
expansion of the wave function, we see that a Slater determinant is the basic
building block

|Ψ〉 =
∑
k

∑
s

ck;s â
†
k1s1

â†k2s2 . . . â
†
kNsN

|〉 , (2.1)
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Chapter 3

Semidefinite Programming

Science is knowledge which we understand so well that we can
teach it to a computer; and if we don’t fully understand
something, it is an art to deal with it.

Donald E. Knuth

The world of convex optimization is a rich and interesting world.

Please read Paper 1 on page 19. Or simply Paper 1.
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Chapter 4

Results

In the previous chapters, we have introduced the concept of the Variational
Optimization of the second-order reduced Density Matrix. In Chapter 2, a
necessary set ofN -representability conditions were derived and in Chapter 3
we have shown the computational methods that can be used to do the actual
optimization. It is time to use this knowledge. First we look into Doubly
Occupied Configuration Interaction (DOCI) and explain the motivation for
the DOCI N -representability conditions derived in Section 2.4. Next, we
explore orbital optimization with the goal to combine it with v2DM restricted
to DOCI. We then try our method on several benchmark systems to assess
its merits.

4.1 Introduction

Before we begin the story of the marriage between DOCI and v2DM, let us
take a step back and consider the origins of DOCI. First we will introduce
some classic concepts of wavefunction-based methods [2].

13
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Figure 4.1: The red curve has been calculated using XX, while the dashed
blue curve uses the same transformed reduced Hamiltonian but
an optimized 2DM. The min refers to the minimum of the red
curve. The Full Configuration Interaction (FullCI) energy is
-24.810 Eh.
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Chapter 5

Conclusions

The true delight is in the finding out rather than in the knowing.

Isaac Asimov

In this work we have introduced the Variational Optimization of the second-
order reduced Density Matrix to solve the many-body problem. The second-
order reduced Density Matrix (2DM) contains all necessary information to
describe such a system, and the expectation value of one- or two-particle
operators can be expressed as a linear function of the 2DM. Unlike the more
conventional quantum mechanical methods, the wave function is never used.
This method itself has a long history and a�racted quite some a�ention in the
second half of the previous century. At first glance, it has many interesting
properties: the 2DM has a much be�er scaling than the wave function, and
the method is strictly variational. Unlike wavefunction-based methods, it
produces a strict lower bound on the energy (instead of an upper bound). Un-
fortunately, the complexity of the many-body problem has not disappeared,
but is shi�ed to theN -representability problem: what are the necessary and
su�icient conditions for a 2DM to be derivable from an ensemble of many-
fermion wave functions? In the 1960’s, there was still hope that this problem
could be solved in some way, but time has learned that it is a very hard
problem (see later).
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Variational Two-Particle Density Matrix Calculation for the Hubbard Model
Below Half Filling Using Spin-Adapted Lifting Conditions

Brecht Verstichel,1,* Helen van Aggelen,2 Ward Poelmans,1 and Dimitri Van Neck1

1Ghent University, Center for Molecular Modeling, Technologiepark 903, 9052 Zwijnaarde, Belgium
2Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281 (S3), B-9000 Gent, Belgium

(Received 7 November 2011; published 21 May 2012)

The variational determination of the two-particle density matrix is an interesting, but not yet fully

explored technique that allows us to obtain ground-state properties of a quantum many-body system

without reference to an N-particle wave function. The one-dimensional fermionic Hubbard model has

been studied before with this method, using standard two- and three-index conditions on the density

matrix [J. R. Hammond et al., Phys. Rev. A 73, 062505 (2006)], while a more recent study explored so-

called subsystem constraints [N. Shenvi et al., Phys. Rev. Lett. 105, 213003 (2010)]. These studies

reported good results even with only standard two-index conditions, but have always been limited to the

half-filled lattice. In this Letter, we establish the fact that the two-index approach fails for other fillings. In

this case, a subset of three-index conditions is absolutely needed to describe the correct physics in the

strong-repulsion limit. We show that applying lifting conditions [J. R. Hammond et al., Phys. Rev. A 71,

062503 (2005)] is the most economical way to achieve this, while still avoiding the computationally much

heavier three-index conditions. A further extension to spin-adapted lifting conditions leads to increased

accuracy in the intermediate repulsion regime. At the same time, we establish the feasibility of such

studies to the more complicated phase diagram in two-dimensional Hubbard models.

DOI: 10.1103/PhysRevLett.108.213001 PACS numbers: 31.15.aq, 03.65.Aa

The main problem in many-body quantum mechanics,
which comprises nuclear physics, quantum chemistry, and
condensed matter physics, is the exponential increase of
the dimension of Hilbert space with the number of parti-
cles. The challenge has therefore been to develop approxi-
mate methods which describe the relevant degrees of
freedom in the system without an excessive computational
cost, i.e., with a polynomial increase. In one of these
methods, the N-particle wave function is replaced by the
two-particle density matrix (2DM), and over the last de-
cade, a lot of progress has been made in this field [1–6]. For
a Hamiltonian,

Ĥ ¼ X
��

t��a
y
�a� þ 1

4

X
����

V��;��a
y
�a

y
�a�a�; (1)

containing only pairwise interactions, the energy of the
system can be expressed as

Eð�Þ ¼ Tr�Hð2Þ ¼ 1

4

X
����

���;��H
ð2Þ
��;��; (2)

in terms of the 2DM:

���;�� ¼ h�Njay�ay�a�a�j�Ni; (3)

and the reduced two-particle Hamiltonian,

Hð2Þ
��;�� ¼ 1

N � 1
ð���t�� � ���t�� � ���t�� þ ���t��Þ

þ V��;��: (4)

Second-quantized notation is used where ay� (a�) creates
(annihilates) a fermion in the single-particle state �.
In variational density-matrix optimization (V2DM),

originally introduced by Löwdin, Mayer, and Coleman
[7–9], one exploits this fact and uses the 2DM as a variable
in a variational approach. From the resulting 2DM, all one-
and two-body properties of the ground state can be ex-
tracted. This should not be implemented naively, however,
as there are a number of nontrivial constraints that a 2DM
has to fulfill in order to be derivable from an N-particle
wave function. This is the N-representability problem [9],
which was proven to belong, in general, to the QMA-
complete complexity class [10]. In practical approaches,
one uses a set of conditions which are necessary but not
sufficient, and therefore lead to a lower bound on the
ground-state energy. The most commonly used are the
two-index conditions, called P (or D), Q, and G [9,11],
and the computationally much heavier three-index condi-
tions called T1 and T2 [12,13]. They all rely on the fact that

for a manifestly positive Hamiltonian Ĥ ¼ P
iB̂

y
i B̂i, the

expectation value of the energy has to be larger than zero.
These conditions can be expressed as linear matrix maps of
the 2DM that have to be positive semidefinite. Another
type of constraint that has recently been developed is the
subsystem or active-space constraints [14–16] in which
linear conditions are imposed on only that part of the
density matrix that is related to a subspace of the complete
single-particle space. This allows one to increase accuracy
(in the subspace) without having to use three-index con-
ditions. Such V2DM methods have been used to study a

PRL 108, 213001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
25 MAY 2012

0031-9007=12=108(21)=213001(5) 213001-1 � 2012 American Physical Society
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Neck, “Variational optimization of the 2DM: approaching three-index
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Journal B 87, 59 (2014)

• S. Wouters, W. Poelmans, P.W. Ayers, D. Van Neck, “CheMPS2: a free
open-source spin-adapted implementation of the density matrix renor-
malization group for ab initio quantum chemistry”, Computer Physics
Communications, 185, 1501-1514 (2014)

• M. Van Houteghem, A. Ghysels, T. Verstraelen, W. Poelmans, M. Waro-
quier, V. Van Speybroeck, “Critical analysis of the accuracy of models
predicting or extracting liquid structure information”, Journal of Phys-
ical Chemistry B, 118, 2451–2470, (2014)

• S. Wouters, W. Poelmans, S. De Baerdemacker, P.W. Ayers, D. Van Neck,
“CheMPS2: Improved DMRG-SCF routine and correlation functions”,
Computer Physics Communications, 191, 235-237, (2015)

• W. Poelmans, M. Van Raemdonck, B. Verstichel, S. De Baerdemacker,
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“Variational optimization of the second order density matrix corre-
sponding to a seniority-zero configuration interaction wave function”,
Journal of Chemical Theory and Computation, 11, 4064-4076, (2015)
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